Patch-based Face Recognition using a Hierarchical Multi-label Matcher
نویسندگان
چکیده
This paper proposes a hierarchical multi-label matcher for patch-based face recognition. In signature generation, a face image is iteratively divided into multi-level patches. Two different types of patch divisions and signatures are introduced for 2D facial image and texture-lifted image, respectively. The matcher training consists of three steps. First, local classifiers are built to learn the local matching of each patch. Second, the hierarchical relationships defined between local patches are used to learn the global matching of each patch. Three ways are introduced to learn the global matching: majority voting, `1-regularized weighting, and decision rule. Last, the global matchings of different levels are combined as the final matching. Experimental results on different face recognition tasks demonstrate the effectiveness of the proposed matcher at the cost of gallery generalization. Compared with the UR2D system, the proposed matcher improves the Rank-1 accuracy significantly by 3% and 0.18% on the UHDB31 dataset and IJB-A dataset, respectively.
منابع مشابه
LBP-based periocular recognition on challenging face datasets
This work develops a novel face-based matcher composed of a multi-resolution hierarchy of patch-based feature descriptors for periocular recognition recognition based on the soft tissue surrounding the eye orbit. The novel patch-based framework for periocular recognition is compared against other feature descriptors and a commercial full-face recognition system against a set of four uniquely ch...
متن کاملA Face Recognition Signature Combining Patch-based Features with Soft Facial Attributes
This paper focuses on improving face recognition performance with a new signature combining implicit facial features with explicit soft facial attributes. This signature has two components: the existing patch-based features and the soft facial attributes. A deep convolutional neural network adapted from state-of-the-art networks is used to learn the soft facial attributes. Then, a signature mat...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملOn Hair Recognition in the Wild by Machine
We present an algorithm for identity verification using only information from the hair. Face recognition in the wild (i.e., unconstrained settings) is highly useful in a variety of applications, but performance suffers due to many factors, e.g., obscured face, lighting variation, extreme pose angle, and expression. It is well known that humans utilize hair for identification under many of these...
متن کاملLBP-based Hierarchical Sparse Patch Learning for Face Recognition
Local Binary Pattern (LBP) features and its variants are computed on the patches with the fixed positions and a fixed size in images, while the limited variety of the size and position cannot accurately measure the nature of face image. In this paper, we propose a new learning method, Hierarchical Sparse Patch Learning (HSPL), to select face patches with different positions and sizes for face r...
متن کامل